
NT5 at WMT 2022 General Translation Task

∗Makoto Morishita♠, ∗Keito Kudo♢, ∗Yui Oka♠, ∗Katsuki Chousa♠,
†Shun Kiyono♡, †Sho Takase♣, Jun Suzuki♢♡

♠NTT Communication Science Laboratories ♢Tohoku University
♡RIKEN Center for Advanced Intelligence Project ♣Tokyo Institute of Technology

Abstract

This paper describes the NTT-Tohoku-
TokyoTech-RIKEN (NT5) team’s submission
system for the WMT’22 general translation
task. This year, we focused on the English-to-
Japanese and Japanese-to-English translation
tracks. Our submission system consists of an
ensemble of Transformer models with several
extensions. We also applied data augmentation
and selection techniques to obtain potentially
effective training data for training individual
Transformer models in the pre-training
and fine-tuning scheme. Additionally, we
report our trial of incorporating a reranking
module and the reevaluated results of several
techniques that have been recently developed
and published.

1 Introduction

This paper describes an overview of our submission
systems for participating in the WMT 2022 gen-
eral machine translation tasks. Our team, named
NT5, is comprised of individuals from four organi-
zations: NTT, Tohoku University, Tokyo Institute
of Technology, and RIKEN. This year, we focused
on bi-directional translation in a single language
pair: English-to-Japanese (En→Ja) and Japanese-
to-English (Ja→En) translation tracks.

Our submission system consists of an ensemble
of Transformer models (Vaswani et al., 2017) with
several recent extensions. We also applied data aug-
mentation and selection techniques to obtain poten-

∗: Equal contributions. Morishita trained the initial trans-
lation model and created a synthetic corpus. Morishita and
Kudo tuned the model’s hyper-parameters. Oka implemented
the relative positional embeddings. Chousa worked on the data
filtering and the reranking module. Kiyono and Takase imple-
mented the B2T connections and helped with the experiments.
Morishita and Oka implemented the in-domain data selection
methods for fine-tuning. Morishita, Kudo, and Suzuki devel-
oped an effective fine-tuning strategy. Morishita, Kudo, and
Suzuki trained the main translation models. Suzuki organized
the team. Everyone contributed to writing this paper.

†: Their current affiliation is LINE Corporation.

Bitext

Target
Monolingual

Translated
Texts

Target-to-Source
Model

Synthetic
Data

Bitext

Selected data
for Fine-tuning

Test Set
N-best

Candidates

…

Source-to-Target
Model

Reranking
Module

Final Output

In-domain Data 
Selection Module

Source-to-Target
Fine-tuned Model

Figure 1: System overview

tially effective training data for training individual
Transformer models in the pre-training/fine-tuning
scheme. The models were first trained with a large
but possibly noisy parallel corpus for pre-training
and then with a small but clean parallel corpus
for fine-tuning. Additionally, we report our trial
of incorporating a reranking module that rescores
the n-best lists based on source-to-target, target-to-
source, and masked language models.

The following section briefly provides an
overview of our entire system and each module
in more depth.

2 System Overview

Figure 1 shows an overview of our system. Our
submissions are for the constrained track, which
only uses parallel and monolingual data that are
provided by the WMT shared-task organizers.



We selected Transformer models (Vaswani et al.,
2017) as our base translation model and chose a
two-step training strategy: pre-training and fine-
tuning schemes. We first constructed datasets for
the pre-training and fine-tuning.

The pre-training dataset must be as large as pos-
sible, even if the data are noisy (Bansal et al., 2022).
We first trained the Transformer models using only
the provided bitext datasets for both translation di-
rections: En→Ja and Ja→En. We refer to these
first trained models as initial models. We then gen-
erated synthetic datasets for both directions through
back-translation (Sennrich et al., 2016), i.e., trans-
lating target-side monolingual data using the initial
model in the reverse translation direction.

The fine-tuning dataset must be as clean as pos-
sible, even if it is relatively small. Indeed, in our
previous year’s submission (Kiyono et al., 2020),
we adapted the models to a news domain in the fine-
tuning phase and drastically improved the transla-
tion quality. However, this year’s task focused on
a general domain, i.e., a test set that consisted of
sentences from multiple domains. Thus, adapta-
tion by fine-tuning is much more challenging. We
tested and combined data selection methods based
on sentence embeddings and language models for
obtaining fine-tuning data. This process can be
viewed as selecting domain adaptation data.

By using these datasets, we pre-trained the Trans-
formers with pre-training configurations and fine-
tuned the pre-trained models with the fine-tuning
configurations described in Table 2. Finally, we
conducted an ensemble of fine-tuned models. A
notable characteristic of our system is that we com-
bined the Transformer models with heterogeneous
model configurations for the ensembling. Each
model configuration primarily differs in its depth
and width. Moreover, we applied recent advances
in the extensions of Transformer models, such as
bottom-to-top connection (Takase et al., 2022) and
relative position embedding (Shaw et al., 2018).

Our system also uses a reranking module. We
generated the ten best translation lists as reranking
candidates using an ensemble of Transformer mod-
els. Then we selected the best translations based on
the weighted sum of the likelihoods obtained from
the source-to-target and target-to-source translation
models and the masked language models.

Corpus w/o Filtering w/Filtering

JParaCrawl v3.0 25.7 M 25.0 M
WikiMatrix 3.89 M 3.64 M
JESC 2.80 M 2.57 M
Wiki Titles v3 757 K 327 K
KFTT 440 K 371 K
TED Talks 242 K 224 K
NewsCommentary v16 1.9 K 1.8 K

Table 1: Number of sentence pairs in bitext corpus

3 Dataset Construction

3.1 Provided Data

Bitext Corpus We used all the provided bitext
corpora: JParaCrawl v3.0, News Commentary v16,
Wiki Titles v3, WikiMatrix, Japanese-English Sub-
title Corpus (JESC), The Kyoto Free Translation
Task (KFTT) Corpus, and TED Talks. We filtered
out the potentially noisy pairs using the straight-
forward parallel corpus filtering methods, as de-
scribed in Section 3.2. Table 1 shows the size of
each dataset without/with filtering.

Monolingual Corpus We also used the follow-
ing provided monolingual data: News Crawl, News
Commentary, and Common Crawl. We back-
translated the monolingual sentences with a target-
to-source model trained only with the provided
parallel data, as described in Section 3.2, and used
them as synthetic data (Sennrich et al., 2016).

3.2 Building Pre-training Data

Synthetic Data Construction To augment the
training data, we constructed synthetic data by ap-
plying the initial translation model trained with
bitext to the monolingual data. As a preprocessing
step, we truecased1 both the bitext and monolin-
gual data. We then tokenized the data into sub-
words using the Sentencepiece tool (Kudo
and Richardson, 2018) with the unigram language
model option. We set the vocabulary size to 32,000
for the initial translation model, which is used for
creating synthetic data. For the final submission
model, we increased the vocabulary size to 64,000.
Our hypothesis argues that a bigger vocabulary is
crucial for completely exploiting large synthetic
data. In fact, this 64,000-vocabulary model outper-
formed the 32,000-vocabulary model in our prelim-
inary experiment.

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl


Initial Translation Model

Subword Size 32,000
Architecture Transformer (big) with FFN

size of 4,096
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clip 1.0
Batch Size 1,280,000 tokens
Number of Updates 50,000 steps
Averaging Save a checkpoint every 200

steps and average the last
eight

Implementation fairseq (Ott et al., 2019)

Pre-training Configuration

Subword Size 64,000
Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.1
Gradient Clip 0.1
Batch Size 1,024,000 tokens
Maximum Number of Updates 100,000 steps
Averaging Save a checkpoint every

2,000 steps and average the
last ten

Implementation fairseq (Ott et al., 2019)

Fine-tuning Configuration

Subword Size Identical to Pre-training
Configuration

Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Fixed
Warmup Steps N/A
Max Learning Rate 0.00001
Dropout 0.2
Gradient Clip 1.0
Batch Size 14,400 tokens
Number of Updates Tuned for each model (See

Secsion 4.3)
Averaging Save a checkpoint every ten

steps and average the last
ten

Implementation fairseq (Ott et al., 2019)

Table 2: List of hyper-parameters: We used initial trans-
lation model for creating synthetic data, pre-training
configuration to construct pre-training models described
in Section 4.2, and fine-tuning configuration to construct
models for submission. We used several different model
configurations for ensembling. See Table 4 for more
details.

As the initial translation data, we trained the
Transformer-big model defined in the original
Transformer paper (Vaswani et al., 2017) for

#sent. pairs #subwords (JA) #subwords (EN)

En→Ja 579 M 11.6 B 13.1 B
Ja→En 724 M 15.5 B 16.7 B

Table 3: Statistics of synthetic data used for pre-training

both language directions (English-to-Japanese and
Japanese-to-English translations) only with the pro-
vided bitext data. The detailed hyper-parameters
are described in the initial translation model section
of Table 2. Finally, we respectively translated 1.4B
and 1.2B monolingual sentences for English and
Japanese.

Data Cleaning For both the provided bitext and
synthetic data, we carried out cleaning based on
a combination of sentence embeddings and hand-
crafted rules.

For both the bitext and synthetic data, we re-
moved the too-long sentences whose length ex-
ceeded 500 characters. We also removed the sen-
tences that were identified as not being written in
English or Japanese with the langid2 toolkit.

For the synthetic data, we further applied a sen-
tence embedding-based filtering approach. We took
advantage of LaBSE (Feng et al., 2022) to embed
the Japanese and English sentences into the same
embedding space. We then scored and ranked the
parallel sentence pairs based on the cosine similar-
ity of their sentence embeddings. Subsequently, we
filtered out the following items from the synthetic
data:

• duplicated sentence pairs
• sentences over 150 words3 or single words with

over 40 characters
• sentences whose ratio between word and charac-

ter count is greater than 12
• sentences that contain invalid Unicode characters
• sentence pairs whose source/target word ratio

exceeds 4
• sentence pairs whose source/target length ratio

exceeds 6
• sentence pairs whose source and target sentences

are identical
• sentence pairs whose cosine similarity is greater

than 0.964

2https://github.com/saffsd/langid.py
3We tokenized the Japanese sentences by MeCab (Kudo,

2006) with the IPA dictionary. Note that this tokenization is
for cleaning purpose only.

4We found that sentence pairs with high cosine similarities
might be noisy; for example, the source and target sentences

https://github.com/saffsd/langid.py


Finally, we respectively selected approximately
the top 579 M and 724 M sentences from the trans-
lated 1.2B and 1.4B monolingual sentences as the
synthetic data of En→Ja and Ja→En in the rank
orders. Table 3 shows the statistics of synthetic
data used for our pre-training.

3.3 Building Fine-tuning Data
As for the fine-tuning data, we prepared two types
of data: news and general. The news data consist
of the dev and test sets of the WMT’20 news trans-
lation task, which has 3,991 sentences. General
data were created by selecting parallel sentences
in the target domain. We used the n-gram lan-
guage model-based method proposed by Moore
and Lewis (2010) and selected the top 20,000
scored sentences from the synthetic corpus. We
also used sentence embeddings to select the gen-
eral domain data. We used an unsupervised Sim-
SCE (Gao et al., 2021) as the English sentence
embedding and SentenceTransformers (Reimers
and Gurevych, 2019) as the Japanese sentence em-
bedding5. We searched for the nearest 4,000 sen-
tences to the target domain using faiss (Johnson
et al., 2019) and combined the sentences selected
by both the language model-based and sentence
embeddings. As a result, our general domain data
contained 24,000 sentences.

4 Primary Translation Module

4.1 Model Configuration
We trained several Transformer models for the
model ensembling in the decoding phase. We inde-
pendently trained models with different sizes due
to the restrictions on computational resources at
hand. We pre-trained and fine-tuned each model
with the configurations shown in Table 2. The de-
tails of the model configurations are summarized
in Table 4.

Our configuration has three notable character-
istics: a bottom-to-top (B2T) connection (Takase
et al., 2022), relative position embedding, and a
larger batch size.

B2T Connection Transformer architectures can
be categorized into two types based on the position
of the layer normalizations: Post-LN and Pre-LN.
Previous studies (Xiong et al., 2020; Liu et al.,
2020; Takase et al., 2022) indicated that training

are sometimes identical. Thus we removed them from the
training data.

5We used stsb-xlm-r-multilingual.

a deep Post-LN Transformer6 is unstable due to
the vanishing gradient problem. However, Takase
et al. (2022) argued that Post-LN Transformers out-
perform Pre-LN Transformers if their trainings are
successful. Thus, we want to exploit the advantage
of Post-LN Transformers. In addition, we want
to make our Transformers as deep (and wide) as
possible to make a full use of large synthetic data.

Several studies proposed techniques that stabi-
lize the trainings of Post-LN Transformers while
retaining their performance advantages (Liu et al.,
2020; Takase et al., 2022). In this study, we
used the B2T connection proposed by Takase et al.
(2022), which has an additional residual connection
from an input to an output in each layer. The B2T
connection is easy to implement and can be incor-
porated with a tiny amount of extra computational
cost.

Relative Position Embedding A Transformer
model was originally equipped with Absolute Po-
sition Embedding (APE) (Gehring et al., 2017)
for position representation. However, several re-
cent studies (Raffel et al., 2020; Narang et al.,
2021) report that Relative Position Embedding
(RPE) (Shaw et al., 2018) outperforms APE, es-
pecially for sentences whose lengths are unseen
during the training (Kiyono et al., 2021). Thus, for
the Transformer encoder, we replaced APE with
RPE. Following Shaw et al. (2018), we set clipping
distance k to 16.

Larger Batch Size Ott et al. (2019) demon-
strated that a large batch size improves perfor-
mance. The recent development of large language
models also indicates this tendency (Hoffmann
et al., 2022). Given this knowledge, we followed
the setting of T5 (Raffel et al., 2020) and selected
a token batch size of approximately 1M. Note that
this is much larger than the batch size used by Ott
et al. (2019).

4.2 Pre-training
We trained each model described in Table 4 with
the filtered bitext and synthetic data described in
Section 3.2. We set the maximum number of up-
dates to 100,000 and used early stopping based
on the validation set performance. In this phase,
we used the Pre-training configuration of Table 2.
Since the synthetic data is extremely larger than the

6When we used the dimension sizes described in Table 4,
the trainings of nine or more layers of Post-LN Transformers
diverged.



Configuration #Models #Params. Encoder Decoder

Layer dmodel dffn Attention Heads Layer dmodel dffn Attention Heads

NTT-Base 2 547M 9 1024 8192 16 9 1024 8192 16
ABCI-Base 2 622M 9 1024 16384 16 9 1024 4096 16

ABCI-EncBig 1 2.0B 12 1024 65536 16 9 1024 8192 16
ABCI-EncDeep 1 736M 18 1024 8192 16 9 1024 8192 16
Failab-EncBig 1 1.7B 9 1024 61440 16 9 1024 16384 16
Failab-DecBig 1 1.7B 9 1024 16384 16 9 1024 61440 16

Table 4: List of model configurations used in final system: dmodel and dffn respectively denote sizes of embedding
and feedforward layers. In En→Ja, Failab-EncBig and Failab-DecBig did not fit in the GPU memory.
Therefore, we set dffn to 58368 instead of 61440, which is the largest value that successfully worked.

bitext, we upsampled the bitext until it reaches to a
1:1 ratio to the synthetic data. In addition, we used
the tagged back-translation technique (Caswell
et al., 2019). In detail, we attached a special to-
ken ⟨BT⟩ to the beginning of source sentences in
synthetic data.

To improve the performance, we tried using
several perturbation methods described in Takase
and Kiyono (2021) in this training phase. How-
ever, they did not positively affect the performance.
Since the number of sentences in our training data
is far greater than in their study, regularization by
perturbations might be ineffective.

4.3 Fine-tuning

We fine-tuned the pre-trained translation models
with the fine-tuning dataset described in Section 3.3
and used the configurations described in Table 2.
We set the maximum number of updates to 600, and
used early-stopping according to the performance
on the test data of WMT’21 (wmt21test).

4.4 Ensemble

We ensembled the fine-tuned models described in
Table 47. How we ensembled the Transformer mod-
els trained in different model configurations is an-
other unique characteristic of our system compared
with the standard configurations used in the WMT
submission systems.

5 Post-processing

5.1 Reranking

We tried to apply a reranking method to select the
most likely candidate from a set of candidates and
input. We scored the candidate with several models
and unified these scores with Minimum Error Rate

7We trained two models with both the NTT-base and
ABCI-base configurations with different random seeds.

Training (MERT) (Och, 2003), which is often used
in Statistical Machine Translation (SMT).

Suppose we have set of candidate output sen-
tences Ci for each source sentence si, where i ∈
{1, . . . , I}. In our case, we generated n-best candi-
dates using the submission model with the beam-
search algorithm.

Hereafter, Pj(si, e) ∈ [0, 1] denotes candidate
score e ∈ Ci for i-th input si from the j-th model,
where j ∈ {1, . . . , J}, and w = (w1, . . . , wj)
denotes the vector representation of the model
weights. Given weights w, the most likely can-
didate êwi from Ci is obtained by maximizing the
weighted sum of Pj :

êwi = argmax
e∈Ci


J∑

j=1

wjPj(si, e)

 . (1)

Finally, we explored ŵ for the parameter esti-
mation of w by solving the following optimization
problem:

ŵ = argmax
w∈[0,1]J

{
corpus_bleu(Êw)

}
, (2)

where Êw =
(
êiw

)I
i=1

.
For the candidate’s score, we used the following

models to compute Pj(si, e).

L2R Forward and Backward Translation Mod-
els The left-to-right (L2R) forward and backward
translation models are identical as those used for
the candidate generation of En→Ja and Ja→En.
For each direction, we trained two models with two
different training data; these four models computed
the score by force-decoding a candidate from their
input.

R2L Forward and Backward Translation Mod-
els The right-to-left (R2L) forward and backward
translation models generate a translation in reverse



ID Model En→Ja Ja→En

wmt20dev wmt21test wmt22test wmt20dev wmt21test wmt22test

(a) NTT-Base (bitext only) 22.5 - - 22.7 - -

(b) NTT-Base (Seed#1) 23.9 25.6 - 24.1 21.5 -
(c) NTT-Base (Seed#2) 23.7 25.5 - 24.0 21.5 -
(d) ABCI-Base (Seed#1) 25.4 27.6 - 25.5 23.4 -
(e) ABCI-Base (Seed#2) 26.0 28.3 - 25.5 23.2 -
(f) ABCI-EncBig 24.7 26.7 - 25.5 22.6 -
(g) ABCI-EncDeep 24.8 26.5 - 25.3 22.8 -
(h) Failab-EncBig 24.6 26.3 - 23.7 20.4 -
(i) Failab-DecBig 23.5 25.4 - 23.0 20.9 -

(j) (b), finetuned on news - 28.6 26.3 - 25.6 24.9
(c), finetuned on news - 29.0 26.2 - 26.0 25.1
(d), finetuned on news - 28.9 26.6 - 25.8 25.4
(e), finetuned on news - 28.5 26.6 - 25.8 25.0
(f), finetuned on news - 29.4 26.5 - 27.0 25.5
(g), finetuned on news - 28.8 26.7 - 26.4 25.6
(h), finetuned on news - 29.2 26.7 - 25.6 25.2
(i), finetuned on news - 28.6 26.4 - 25.9 25.1

(k) (b), finetuned on news+general - 27.8 25.4 - 24.9 23.9
(c), finetuned on news+general - 28.0 24.8 - 24.5 23.8
(d), finetuned on news+general - 28.4 25.3 - 25.0 24.7
(e), finetuned on news+general - 28.0 25.3 - 24.9 24.6
(f), finetuned on news+general - 28.0 25.0 - 25.8 24.8
(g), finetuned on news+general - 28.5 25.6 - 25.3 24.5
(h), finetuned on news+general - 28.6 25.1 - 25.2 24.2
(i), finetuned on news+general - 27.9 24.7 - 25.1 23.9

(l) Ensemble of (j) - 30.6 27.6 - 27.8 26.6
(m) Ensemble of (k) - 29.6 25.8 - 26.8 25.4
(n) Ensemble of (l) and (m) - 30.6 27.2 - 27.9 26.6

(o) (n) + reranking - - 25.7 - - 25.0

Table 5: Performance comparison of models trained for submission: Models (b)-(i) are pre-trained models (details
in Section 4.2). Models (j)-(o) do not contain wmt20dev result because the dataset is in news fine-tuning dataset.
We chose model (l) for the final submission. Note that the wmt22test results were computed as the post-evaluation
after the wmt22 test data was released.

word order. We trained the model of both directions
with all the provided bitext datasets and computed
the scores with the same procedure as was used for
the L2R models.

Masked Language Models We also used the
masked language models to compute the likelihood
of the decoded target sentences. Specifically, we
used the pre-trained models of DeBERTa (He et al.,
2021)8 for English and RoBERTa (Liu et al., 2019)9

for Japanese. To score the candidate, we adopted
pseudo-log-likelihood scores (PLLs), computed by
masking tokens one by one, as proposed by Salazar
et al. (2020) Finally, we normalized the PLLs by
dividing them by token length.

8https://huggingface.co/microsoft/
deberta-v2-xxlarge

9https://huggingface.co/nlp-waseda/
roberta-large-japanese-seq512

5.2 Rule-base Formatting

We also applied language-specific post-processing.

Ja→En We detokenized and detruecased the sen-
tences and removed all the unknown tokens from
the outputs. Since some placeholders were tok-
enized into two or more tokens, we fixed them to a
single token.

En→Ja We removed the spaces in the English
proper nouns of two characters or fewer, the spaces
before and after such special symbols as "/", "-" or
"#PRS/ORG#". We replaced English style commas
"," and periods "." with the Japanese styles: "，"
and "。".

6 Results

Table 5 shows the performance of both the interme-
diate models and the final model for our submis-
sion. Our result highlights the effectiveness of the

https://huggingface.co/microsoft/deberta-v2-xxlarge
https://huggingface.co/microsoft/deberta-v2-xxlarge
https://huggingface.co/nlp-waseda/roberta-large-japanese-seq512
https://huggingface.co/nlp-waseda/roberta-large-japanese-seq512


techniques incorporated in our system.

Effectivenss of Fine-tuning Data We expected
model (m), which was fine-tuned on the general
domain, to achieve the best result. However, the
model (l), which was fine-tuned on the news do-
main, achieved the higher BLEU score on both
wmt21test and wmt22test. We suspect this is be-
cause the data used for the news fine-tuning are
cleaner than those of the general domain. Since
the fine-tuning data for the news domain consists
of the previous years’ dev/test sets that were trans-
lated by professionals, the news domain data are
clean while the general domain data were chosen
mainly from synthetic data. We will analyze the
relationship between the translation accuracy and
the cleanliness of the fine-tuned data in the future.

Negative Result on Reranking In Table 5, the
performance of model (n) and (o) demonstrate that
the reranking technique (Section 5.1) did not im-
prove the performance over the ensemble models
on wmt22test. We suspect that this performance
degradation comes from the domain difference be-
tween the datasets used for MERT and the eval-
uation. For MERT, We used wmt21test, whose
domain is news, to optimize the model weights;
however, this year’s test set, wmt22test, contains
sentences from multiple domains. Thus, we chose
model (l), which is the model without reranking,
for our final submission.

7 Conclusion

We described the submission of our joint team
(NTT, Tohoku, TokyoTech, and RIKEN) to the
WMT’22 general translation task. We participated
in the En↔Ja translation. Our system mainly con-
sists of an ensemble of Transformer models with
several recent extensions. We also applied data
augmentation and selection techniques to train indi-
vidual Transformer models in our pre-training/fine-
tuning training scheme.

Acknowledgments

We thank two anonymous reviewers who provided
valuable feedback. This work was mainly done
under the NTT-Tohoku University collaborative re-
search agreement. The work of Sho Takase was
partly supported by JSPS KAKENHI Grant Num-
ber JP21K17800 and JST ACT-X Grant Number
JPMJAX200I. The work of Jun Suzuki was partly

supported by JST Moonshot R&D Grant Number
JPMJMS2011 (fundamental research).

References
Yamini Bansal, Behrooz Ghorbani, Ankush Garg, Biao

Zhang, Colin Cherry, Behnam Neyshabur, and Orhan
Firat. 2022. Data scaling laws in NMT: The effect
of noise and architecture. In Proceedings of the
39th International Conference on Machine Learn-
ing (ICML), volume 162 of Proceedings of Machine
Learning Research, pages 1466–1482.

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged Back-Translation. In Proceedings
of the Fourth Conference on Machine Translation
(WMT), pages 53–63.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 878–891.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6894–6910.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
the 34th International Conference on Machine Learn-
ing (ICML), volume 70 of Proceedings of Machine
Learning Research, pages 1243–1252.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In Proceedings of
9th International Conference on Learning Represen-
tations (ICLR).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Mor-
ishita, and Jun Suzuki. 2020. Tohoku-AIP-NTT at
WMT 2020 news translation task. In Proceedings of
the Fifth Conference on Machine Translation (WMT),
pages 145–155.

Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Ken-
taro Inui. 2021. SHAPE: Shifted absolute position
embedding for transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3309–3321.



Taku Kudo. 2006. MeCab: yet another
part-of-speech and morphological analyzer.
http://mecab.sourceforge.net.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 66–71.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5747–5763.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv preprint arXiv:1907.11692.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
220–224.

Sharan Narang, Hyung Won Chung, Yi Tay, Liam
Fedus, Thibault Fevry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus,
Adam Roberts, and Colin Raffel. 2021. Do trans-
former modifications transfer across implementations
and applications? In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5758–5773.

Franz Josef Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. In Proceedings
of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL), pages 160–167.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 48–53.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research
(JMLR), 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 2699–2712.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 86–96.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 464–468.

Sho Takase and Shun Kiyono. 2021. Rethinking per-
turbations in encoder-decoders for fast training. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 5767–5780.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun
Suzuki. 2022. On layer normalizations and resid-
ual connections in transformers. arXiv preprint
arXiv:2206.00330.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Pro-
cessing Systems 31 (NIPS), pages 5998–6008.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. In Pro-
ceedings of the 37th International Conference on
Machine Learning (ICML), pages 10524–10533.


	Introduction
	System Overview
	Dataset Construction
	Provided Data
	Building Pre-training Data
	Building Fine-tuning Data

	Primary Translation Module
	Model Configuration
	Pre-training
	Fine-tuning
	Ensemble

	Post-processing
	Reranking
	Rule-base Formatting

	Results
	Conclusion

