
Recovery command generation towards automatic
recovery in ICT systems by Seq2Seq learning

Hiroki Ikeuchi∗, Akio Watanabe†, Tsutomu Hirao‡, Makoto Morishita‡,
Masaaki Nishino‡, Yoichi Matsuo∗, Keishiro Watanabe∗

∗NTT Network Technology Laboratories, NTT Corporation, Tokyo 180-8585, Japan
†NTT East Corporation, Tokyo 163-8019, Japan

‡NTT Communication Science Laboratories, NTT Corporation, Kyoto 619-0237, Japan
Email: ∗{hiroki.ikeuchi.re, yoichi.matsuo.ex, keishiro.watanabe.ry}@hco.ntt.co.jp,

‡{tsutomu.hirao.kp, makoto.morishita.gr, masaaki.nishino.uh}@hco.ntt.co.jp, †akio.watanabe.ht@east.ntt.co.jp

Abstract—With the increase in scale and complexity of ICT
systems, their operation increasingly requires automatic recovery
from failures. Although it has become possible to automatically
detect anomalies and analyze root causes of failures with current
methods, making decisions on what commands should be exe-
cuted to recover from failures still depends on manual operation,
which is quite time-consuming. Toward automatic recovery, we
propose a method of estimating recovery commands by using
Seq2Seq, a neural network model. This model learns complex
relationships between logs obtained from equipment and recovery
commands that operators executed in the past. When a new
failure occurs, our method estimates plausible commands that
recover from the failure on the basis of collected logs. We
conducted experiments using a synthetic dataset and realistic
OpenStack dataset, demonstrating that our method can estimate
recovery commands with high accuracy.

I. INTRODUCTION

Automatic recovery from failures has been necessary in
recent information and communications technology (ICT) sys-
tems. As ICT systems become larger and more complex, a
wider variety of failures will occur and their number will in-
crease. Under such circumstances, manual operations are time-
consuming and have been unable to keep system downtime
short.

A great deal of effort has been made to automate failure
handling. Log management platforms, such as [1], [2], auto-
matically collect and analyze logs, i.e., text data to inform op-
erators of various symptoms of system status, such as syslogs
or alarms (e.g., Figure 1 (upper)). On the basis of these logs,
various methods have been proposed to automate the processes
of anomaly detection [3] and root-cause analysis [4]. However,
the recovery process is still done manually, which involves
two steps; determining which commands (recovery commands)
should be executed to recover from a failure and executing the
determined recovery commands (e.g., Figure 1 (lower)). The
latter step can be automated using run book automation (RBA)
tools, but the former needs to be done by operators and is
quite time-consuming. Although there are studies [5]–[10] that
suggest recovery actions for operators, most rely on trouble
tickets, which do not always include sufficient information
to precisely determine recovery commands. As such, we still

cannot free operators from the task of recovering from failures
in spite of much research on the topic.

Towards automatic recovery, we are aiming toward de-
veloping a method of automatically generating the recovery
commands directly from logs. If the automatic generation of
recovery commands is successful, the whole recovery process
can be accomplished automatically just by executing the com-
mands with RBA tools. Since logs and recovery commands
usually accumulate in the equipment, we take an approach in
which we use such accumulated data.

To generate recovery commands using past data, the follow-
ing challenges need to be addressed. First, logs and recovery
commands are non-deterministic and not in one-to-one corre-
spondence. Even if the same failure occurs as before, logs may
fluctuate and the recovery commands may differ depending
on the operator. Second, the length of recovery commands
might differ depending on the failure. This makes it difficult to
apply simple classification techniques to this problem. Third,
the reliability of estimation needs to be measured. This is
necessary from a practical point of view because operators
need to determine whether it is safe to execute the estimated
commands automatically on the basis of reliability.

Taking such challenges into account, we propose a method
of estimating recovery commands by using sequence-to-

log message ID
14:00:00 proc01 DEBUG [req-12345] accepted (IPv4, 12345) server /***/***/*** 1
14:00:01 proc02 INFO [req-56789] Get http://*** 2
14:00:03 proc01 DEBUG [req-24680] Failed to fetch instance by id server1 get /***/*** 4
14:00:03 proc01 DEBUG [req-13579] Returning 404 to user: Could not find instance *** 5
14:00:03 proc01 DEBUG [req-98765] HTTP exception thrown: Could not find instance *** 7
14:00:04 proc01 DEBUG [req-43210] Returning 404 to user: Could not find instance *** 5

openstack-status | grep down
systemctl restart nova-scheduler
openstack-status | grep scheduler

Fig. 1: (Upper) Example of log messages and assigned IDs of Open-
Stack system. Since request IDs are uninformative variables,
log messages with same template and different request IDs
(req-13579 and req-43210) have same log ID 5. (Lower) Re-
covery commands of OpenStack system with nova-scheduler
failure.

2

sequence (Seq2Seq) [11], [12], a neural network model usually
used to solve translation tasks in the field of natural language
processing. In translation tasks, Seq2Seq can learn the relation-
ship between sentences in different languages and convert an
input sentence in one language into that in another language.
Although the correspondence of a sentence to its translated
sentence is not always one-to-one and the lengths of sentences
are variable, Seq2Seq can successfully acquire a translation
model with translation databases. This is very similar to our
problem setting and that is why we expect that Seq2Seq
has the capability of solving the first and second challenges
described above. Using accumulated data as training data, our
method trains Seq2Seq representing the complex relationship
between two non-deterministic length-variable sequences, i.e.,
logs and recovery commands. When a new failure occurs
during operation, the trained Seq2Seq infers plausible recovery
commands on the basis of the observed logs. Regarding the
third challenge, we can adopt the likelihood of the estimated
commands as the reliability. We verified the effectiveness of
our method by conducting experiments using synthetic and
realistic datasets obtained from an OpenStack [13] system,
demonstrating that our method can estimate recovery com-
mands with high accuracy.

The rest of this paper is organized as follows. In Section II,
we state the problem of estimating recovery commands and
introduce the proposed method based on Seq2Seq. In Sec-
tion III, we discuss the effectiveness of our method validated
through experiments using a synthetic dataset and a realistic
OpenStack dataset. In Section IV, we introduce related work.
We conclude this paper and mention future work in Section V.

II. PROBLEM STATEMENT AND PROPOSED METHOD

We describe a problem of recovery command estimation.
We assume a training dataset consisting of N pairs of logs
and recovery commands D = {(logs(k), cmds(k))}Nk=1. Now,
we consider a situation in which a new failure occurs and new
logs logs(test) are obtained. Then, the recovery command esti-
mation involves estimating appropriate recovery commands by
using a certain estimator f such as f(logs(test)) = cmds(test).
We regard the estimation as successful if the system is
recovered by executing cmds(test).

In Section II-A, we briefly review Seq2Seq, and in Sec-
tion II-B, we explain how to apply it to our problem.

A. Seq2Seq

Seq2Seq [11], [12] is a neural network model that learns
the relationship between input and output sequences, and has
been widely used as a basic model of translation systems.
Seq2Seq converts a source sequence X = ⟨X1, X2, . . . X|X|⟩
into a target sequence Y = ⟨Y1, Y2, . . . Y|Y|⟩ in the following
manner.

First, X is converted into a single hidden vector c by an
encoder. More precisely, after each word of X is embedded
in a fixed dimensional space, all are recurrently mapped into
c by using a recurrent neural network (RNN) such as h̄t =
RNNenc(Xs, hs−1), h̄0 = 0, c = h̄|X|. Then, c is recurrently

� � � �

��������	

������
� ���� ���	

���

���������

� � � ������� �����

�� ���� �������� �����

���

���

���

���

���

������

�������

���������

��		
��

������

�����	
�	��	�	
�

����	�
�	��	�	
�

���

�
��� ��

Fig. 2: Recovery command estimation (our method) and English-
French translation (conventional usage) by using Seq2Seq

unfolded and generates one target word Yt at a time by using
a decoder. Formally, we express the decoder as follows:

ht = RNNdec(Yt−1, ht−1), (decoder RNN)

c̃t = ATTN(ht, {h̄s}|X|
s=1), (decoder attention)

p(Y |Y<t,X) = OUT (c̃t, ht), (decoder output)
Yt = argmaxY p(Y |Y<t,X),

where s0 = c, Y<t = ⟨Y1, Y2, . . . Yt−1⟩, and Y0 and Y|Y|
are special symbols indicating the start and end of a sen-
tence, respectively. ATTN(·) indicates an attention layer that
computes the context vector c̃t, which is designed to refer
to all the source hidden states {h̄s}s and represents how
much “attention” should be paid to each {h̄s}s to estimate
Yt. OUT (·) finally outputs the conditional probability on Yt.
We refer the reader to the study by Luong et al. [12] for more
details. In the learning phase, Seq2Seq acquires a model that
maximizes the (log) likelihood of an output sequence, i.e.,
log Πtp(Yt|Y<t,X).

B. Proposed method

The main idea of our method is to use Seq2Seq as f .
Figure 2 shows an overview of our method compared with
English-French translation, a conventional use of Seq2Seq.
To use Seq2Seq as f , we need to render logs and recov-
ery commands in the sequential form. Since the recovery
commands consist of a relatively small number of words,
we can simply consider them as a sequence of words Y =
⟨Y1, Y2, . . . Y|Y|⟩, Yi ∈ V , where V is a set of words ap-
pearing in all commands. The amount of words included in
logs, however, is too large to directly input to Seq2Seq. The
longest sentence handled by Sutskever et al. [11] consists of
79 words, while the number of words in logs to be dealt
with usually exceeds 5,000 (when we assume that one log
message includes 50 words and more than 100 log messages
are generated from one device within one minute). In addition,
logs include uninformative variable parameters to determine
recovery commands, such as date, time or detailed process ID,
which may disrupt the training and estimation. To overcome
these difficulties, we use a log-template-extraction tool [14],
with which we mask the uninformative variable parameters in

3

log messages, extract “log templates”, which are the remaining
invariable parts of log messages, and assign an ID number to
each log template. Thanks to this abstraction, we can reduce
unnecessary dimensions of input data and treat logs as a se-
quence of natural numbers; X = ⟨X1, X2, . . . X|X|⟩, Xi ∈ N.
In the example of Figure 1, we have X = ⟨1, 2, 4, 5, 7, 5⟩，
Y = ⟨openstack-status, |, grep, down, <ENT>, systemctl,
restart, nova-scheduler, <ENT>, openstack-status, |, grep,
scheduler, <EOC>⟩. Here, <ENT> is a word indicating the
pressing of the enter key and <EOC> the end of the series of
commands. Note that log messages with the same template and
different invariable parameters have the same ID 5 assigned.

To determine whether to execute the estimated recovery
commands, we also need to quantify the reliability of the
estimation. We can consider the likelihood Πtp(Yt|Y<t,X)
as the probability that the commands Y would be executed
given logs X. Thus, we adopt (Πtp(Yt|Y<t,X))

1/|Y| as the
reliability of the estimated recovery commands.

III. EXPERIMENTS

We validated our method using two types of datasets, a
synthetic dataset and realistic OpenStack dataset.

A. Configuration

We implemented Seq2Seq using the translation model in
fairseq [15]. Instead of RNN cells, we used long short-time
memory (LSTM) cells. LSTM is an extension of RNN that
enables the learning of long-term dependencies. We set the
dimension of the input/output embedding layer to 512, that
of the hidden vector to 512, and the dropout probability to
0.2. We continued to train the models until no improvement
in loss for validation was observed in the last ten epochs. In
the inferring phase, the decoding beam size was set to 5.

B. Synthetic dataset

We prepared a synthetic dataset by imitating realistic logs
and recovery commands. The main purposes of this exper-
iment were to see whether our method can handle various
types of recovery commands, such as rollback commands or
typos, and whether it is robust against randomness of logs and
recovery commands.

In consideration of a diversity of real failures, we considered
a total of 50 types of failures and divided them into 5 groups
(A)∼(E), each of which includes 10 types of failures. We
assume that failures that belong to the same group have similar
properties and their generated logs and recovery commands are
also similar.

We now explain how to construct the dataset of logs and
recovery commands in detail.
Logs: In creating logs, we considered the following properties
of log appearance. (i) Similar failures generate a large number
of the same logs and a few different logs. For example,
consider two failures that have the same root cause (e.g., termi-
nation of a particular process) occurring in different servers.
They generate almost the same logs because the root cause
is common but also generate a few distinct logs that include

each host name. (ii) Logs unrelated to failures randomly get
mixed in with logs of failures. They are generated by cron jobs,
periodic normality check, or for some other (usually unknown)
reasons. (iii) The order of log appearance is subject to many
factors, such as system response or network delay, and may
randomly change.

Now, we explain how to create logs (sequences of log
IDs) of group (A). We did the same for the other groups
(B)∼(E). First, we randomly generated a sequence of natural
numbers the length of which is about 150. In accordance
with property (i), we then created ten different sequences
corresponding to ten types of failures in group (A) by adding
a few distinct numbers in random positions of the original
sequence. For each sequence, we also added noisy numbers
in random positions and randomly exchanged the orders of
adjacent numbers in consideration of properties (ii) and (iii).
As a result, each sequence consisted of about 200 IDs.
Recovery commands: In general, if we execute a certain
command, we can consider that the state of the ICT system
changes in some way. Thus, the process of executing recovery
commands line by line can be considered a state transition
process that starts from a “failure state” and reaches a “recov-
ered state”. To express various types of recovery measures,
we constructed five types of state transition processes, i.e., au-
tomata. Figure 3 shows five automata (A)∼(E) corresponding
to groups (A)∼(E). In each automaton, state 0 is the initial
failed state and state 1 is the recovered state (accept state).
Each arrow indicates a transition that occurs if and only if a
correct command is executed. We assigned each arrow several
types of correct commands because recovery commands are
not determined uniquely and may differ depending on the
operator. If an incorrect command is executed, the current
state does not change. As an example, Table I shows the
correct commands of each transition in automaton (B). The
transitions [a], [b], and [c] correspond to the arrows with
the same labels in Figure 3. <FailedComponent>∈{cmp1,
cmp2,...,cmp10} is a placeholder that has a different word
depending on the failure in group (B). If the failure belongs
to group (B) and the failed component is cmp1, the recovery
commands ⟨cmd1, xxx, cmp1, <ENT>, show, status <ENT>,
cmd2, restart, cmp1, <EOC>⟩ can successfully recover from
the failure, while ⟨cmd1, xxx, cmp1, <ENT>, cmd1, start,
cmp1, <EOC>⟩ cannot because the system is still in state 2.

Each type of automata is designed to represent realistic
recovery measures. Automata (A)∼(C) are relatively simple,
and in reality, most recovery measures can be expressed
like these. The recovery commands in Section III-C can be
considered as (A)∼(C). Automaton (D) has arrows of opposite
directions, which indicates rollback actions. Automaton (E)
has a branch and several routes to recover from a failure.
Experts commonly take the shortest path to recover, while
beginners take a route requiring much time and more actions.

By using these automata, we created recovery commands
as follows. First, by randomly choosing any one of the correct
commands in each transition and connecting them, we created
an arbitrary sequence of correct commands that is accepted

4

by a given automaton. Then, we randomly inserted several
incorrect commands in the accepted command sequence. The
inserted incorrect commands represent typos or commands for
status check such as “show status”. We repeated the above
procedure for every failure of every group.

To investigate the dependence of our method on the amount
of data, we trained Seq2Seq while varying the number of
samples included in the training and development set (90:10
split). After training, we evaluated the success rate, which is
defined as the ratio of the number of recovery commands
accepted by the corresponding automaton to 450, the total
number of samples in the test set.

� �

� � �

� �

� �

� �

���

���

���

���

�	�

��� ���

���

Fig. 3: Automata that represent recovery measures of groups
(A)∼(E). For example, transition [a] in automaton (B) occurs
when current state is 0 (initial failed state) and one of three
correct commands listed in Table I is executed.

TABLE I: Correct commands in automaton (B)

Transition Correct command
[a] in (B) cmd1 -a xxx <FailedComponent>

cmd1 -b xxx <FailedComponent>
cmd1 xxx <FailedComponent>

[b] in (B) cmd2 start <FailedComponent>
cmd2 restart <FailedComponent>

[c] in (B) reboot
shutdown -r now

[Results]: Table II shows the success rates averaged over
five trials. The results are averaged over ten types of failures
in each group. When we have a sufficiently large amount of
training data, we found that our method can almost correctly
estimate recovery commands for every type of failure. We also
have two significant findings by looking into the estimated
commands. One is that the estimated recovery commands
did not include any incorrect commands such as typos. This
is a significant advantage of our method. The other is that
our method did not always output the shortest paths (the
minimum recovery commands). For example, some estimated
commands in group (D) included rollback commands which
do not appear in the shortest paths. If we want to avoid such
recovery commands, it may be a good idea to estimate several
patterns of recovery commands using beam search and choose
the shortest ones.

As the amount of training data decreased, the success rates
started to drop; suddenly for groups (C), (D), and (E). Since
the path lengths from state 0 to state 1 for automata (C),

(D), and (E) are longer, there is a wider range of variations
in recovery commands. This is why groups (C), (D), and
(E) require more training data to correctly estimate recovery
commands. In practice, if we need to deal with such failures,
it may be a good idea to increase the amount of data by fault
injection in the verification system.

TABLE II: Successful rates of estimated recovery commands. Re-
sults are averaged over ten types of failures in each
group.

samples of train-dev
(per failure)

Group
(A)

Group
(B)

Group
(C)

Group
(D)

Group
(E)

4500 (90) samples 91.6% 91.7% 71.1% 72.1% 75.1%
3750 (75) samples 66.4% 75.3% 3.54% 13.1% 0.66%
3000 (60) samples 45.8% 45.1% 4.44% 10.7% 2.22%

C. Realistic dataset

We constructed an OpenStack system for validation. Open-
Stack is a good example for applying our method because
OpenStack consists of dozens of components and the recovery
command determination based on a large volume of logs gen-
erated from these components is a tremendously exhausting
task. We considered the 13 failures listed in Table III, which
imitate “component unavailable” failures accounting for about
52% of all failures in OpenStack [16]. We manually injected
one of the 13 failures and collected logs, the lengths of which
were around 100∼600, generated in two minutes. We repeated
this procedure several times for each failure. Since some user
actions, such as virtual machine creation, were sometimes
executed within the two minutes, the generated logs differed
depending on the sample even for the same failure. We also
prepared several types of recovery commands for each failure.
This reflects the fact that the recovery commands may differ
depending on the operator even for the same failure. As
an example, Figure 1 shows some of the logs and recovery
commands for the failure “nova-scheduler stop”.

We trained Seq2Seq with training data consisting of 1170
pairs and development data consisting of 130 pairs. We deter-
mined whether the estimation was successful for 121 test cases
and investigated the dependence of success rate on reliability.

TABLE III: List of 13 failures considered in experiment using
realistic dataset

nova-api stop cinder-volume stop
nova-scheduler stop cinder-scheduler stop
nova-conductor stop neutron-server stop
nova-compute stop neutron-openvswitch stop
glance-api stop neutron-dhcp-agent stop
glance-registry stop neutron-l3-agent stop
cinder-api stop

[Results]: Figure 4 plots the number of success-
ful/unsuccessful recovery commands under the condition that
their reliability is more than a given value (red solid line/dotted
blue line, respectively). Note that the value on the vertical
axis (the value at threshold of reliability = 0) indicates the
total number of (un)successful recovery commands. From this
figure and the results of estimated commands, we have the

5

following findings. First, aside from reliability, the success
rate was quite high (109/121 ≃ 90.1%), which demon-
strates the effectiveness of our method. Second, the number
of (un)successful cases remained almost constant when the
threshold of reliability ran from 0 to 0.75. This implies
that almost all the estimated commands had a reliability of
over 0.75 regardless of success or failure. The definition
of reliability may leave room for reconsideration. Third, all
the failed estimated commands were syntactically correct as
commands, but were recovery commands for different types
of failure.

From a practical point of view, it is important for operators
to know what the threshold value of reliability should be.
Operators are supposed to determine that they can execute
the estimated commands if the reliability is beyond the given
threshold. Operation should generally err on the side of caution
because executing inappropriate commands not only fails to
recover the system but also may negatively affect the system.
Thus, the ratio of the number of successes to the total number
of tests that give reliability over the threshold, which is denoted
with the green broken line in Figure 4, should be one. As far
as this experiment is concerned, we conclude that we should
set the threshold of reliability to at least 0.86.

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

0.86

of

 s
u

cc
es

se
s/

fa
ilu

re
s

R
at

io
 o

f
su

cc
es

se
s

Threshold of reliability

of successes
of failures
Ratio of successes

Fig. 4: Number of successes/failures (red solid line/dotted blue line)
and ratio of successes (broken green line) under given reliabil-
ity. Under condition that threshold of reliability is above 0.86
(vertical black dotted line), ratio of successes becomes one,
which means all estimated recovery commands satisfying this
condition could be executed safely.

IV. RELATED WORK

A. Trouble-ticket-based method
To the best our knowledge, this is the first paper that

addresses the estimation of recovery commands without man-
ually predefining recovery actions. Most previous research on
failure recovery relied on trouble tickets, which are reports
of failure operation written in a natural language. Some
methods [5]–[7] present operators trouble tickets relevant
to a failure by using machine learning techniques such as
topic models. Other methods [8]–[10] analyze multiple trouble
tickets (or official troubleshooting guidelines if any) and visu-
alize them as a workflow chart that operators can understand

easily. These methods shorten recovery time by supporting
operators’ decision making. However, the writing style of
trouble tickets greatly differs depending on the operator, and
trouble tickets do not always include sufficient information to
precisely decide recovery actions. Thus, an operator needs to
read the recommended tickets or workflow charts carefully and
determine what action should be taken at his/her discretion. On
the other hand, our method focuses on recovery commands,
which do not have such ambiguity and are executable by
machines.

B. Optimal recovery action selection
Intelligent selection of optimal recovery actions is an-

other direction of research on failure recovery. Some such
methods [17], [18] formulate the decision-making problem
of optimal recovery actions as a partially observed Markov
decision model (POMDP). By solving the POMDP prob-
lem, they suggest the optimal actions on the basis of the
monitored information such as health check of a server or
network connection. They seem compatible with the concept
of automatic recovery. However, they need to construct a
probability model imitating the system behavior in advance.
This is rather difficult in the case of complex systems such as
OpenStack. Other promising methods for automatic recovery
include reinforcement-learning-based methods. The methods
proposed by Littman et al. [19], [20] are aimed at acquiring a
time-efficient recovery policy by attempting various episodes
of actions. They require a verification system or simulator that
imitates a target system. The method proposed by Zhu and
Yuan [21] generates an efficient recovery policy on the basis of
the structured reports of recovery history issued by machines.
Although this method does not require a verification system,
the structured reports do not always exist unlike logs, which
are always accessible as a standard for machine messages.
Moreover, all these methods need to predefine the action space,
i.e., what commands can be used.

C. Self-healing functions of cloud-based systems
The relation between our method and self-healing functions

with which modern cloud-based systems are equipped is worth
mentioning. In the case of Kubernetes [22], for example, when
a certain failure occurs in physical servers or virtual instances,
i.e., pods, the controller manager automatically detects the
event and recreates or relocates instances in other servers.
We believe that our method is a complement to such self-
healing functions. In practice, there are failures that cannot be
handled with self-healing functions. For example, problems
occurring in lower layers above which a cloud computing
service is implemented, such as disconnection of a network
through which Kubernetes nodes are connected, need to be
resolved with other mechanisms than self-healing functions.
Our method has potential to address such problems as long as
accumulated logs and recovery commands are accessible.

D. Seq2Seq learning
Due to its power and flexibility, Seq2Seq have been applied

to a variety of tasks. A series of studies closely related to

6

ours applied the models of generating source code of general
purpose programming languages such as Python [23], [24].
Compared with these tasks, our task is mainly different in
the point that its input is highly regularized log data, which
means appropriate abstractions would contribute to better
performance.

V. CONCLUSION

We proposed an automatic recovery command estimation
method based on Seq2Seq and evaluated its effectiveness
through experiments using a synthetic dataset and realistic
OpenStack dataset. We also discussed the appropriate setting
of the threshold of reliability to automatically execute the
estimated commands. We believe that our method presents a
new direction for automatic operation of ICT systems.

Our method still has the following limitations, which remain
as for further study. (1) We evaluated our method in a small-
scale verification system. We need to confirm the effectiveness
of our method for larger commercial products by conducting
further evaluation. As investigated in Section III-B, whether
the amount of real data and the fluctuation in real recovery
commands are acceptable for Seq2Seq seems to be one of
the applicable conditions of our method. (2) The recovery
commands often include variant arguments such as IP ad-
dresses or host names. Such information needs to be estimated
and filled in appropriately to execute the commands. Since
there are many techniques to estimate such information, we
need to develop a method that can collaborate with such
techniques. (3) In contrast to natural language, commands
have rigorous syntax and would never work if they broke the
syntax even a little. In our experiments, we did not observe
such wrong commands, but it would be possible in other
cases. Thus, we need to develop a method of incorporating
the syntactic information of commands. (4) Our method infers
the recovery commands to the end of recovery at all once.
However, recovery processes sometimes branch depending on
the outcome of the executed command. Thus, we need to
develop another method for generating commands iteratively
in response to the outcome of the previous commands.

REFERENCES

[1] Splunk, http://www.splunk.com
[2] Elastic Stack, https://www.elastic.co/jp/solutions/log

ging.
[3] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly

detection techniques,” Journal of Network and Computer Applications,
vol. 60, pp. 19–31, 2016.

[4] H. Ikeuchi, A. Watanabe, T. Kawata, and R. Kawahara, “Root-Cause
Diagnosis Using Logs Generated by User Actions,” in Proc. of IEEE
Global Communication Conference (Globecom), pp. 1–7, 2018.

[5] W. Zhou, L. Tang, T. Li, L. Shwartz, and G. Grabarnik, “Resolution
recommendation for event tickets in service management,” in Proc. of
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), pp. 287–295, 2015.

[6] W. Zhou, W. Xue, R. Baral, Q. Wang, C. Zeng, T. Li, J. Xu, Z. Liu,
L. Shwartz, and G. Grabarnik, “STAR: A system for ticket analysis
and resolution,” in Proc. of the 23rd ACM International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 2181–2190, 2017.

[7] L. Tang, T. Li, L. Shwartz, and G. Grabarnik, “Recommending reso-
lutions for problems identified by monitoring,” in Proc. of IFIP/IEEE
International Symposium on Integrated Network Management (IM),
pp.134–142, 2013.

[8] A. Watanabe, K. Ishibashi, T. Toyono, T. Kimura, K. Watanabe, Y.
Matsuo, and K. Shiomoto,“Workflow extraction for service operation
using multiple unstructured trouble tickets,” in Proc. of IEEE/IFIP
Network Operations and Management Symposium (NOMS), pp. 652–
658, 2016.

[9] A. Watanabe, K. Ishibashi, T. Toyono, K. Keishiro, T. Kimura, Y.
Matsuo, K. Shiomoto, and R. Kawahara, “Workflow extraction for
service operation using multiple unstructured trouble tickets,” IEICE
Transactions on Information and Systems, vol. E101-D, no. 4, pp. 1030–
1041, 2018.

[10] E. Aumayr, M. Wang, and A.-M. Bosneag, “Probabilistic Knowledge-
Graph based Workflow Recommender for Network Management Au-
tomation,” Proc. of IEEE 20th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–7, 2019.

[11] I. Sutskever, O. Vinyals, and Q. V. Le., “Sequence to sequence learning
with neural networks,” in Proc. of the 28th Conference on Neural
Information Processing Systems (NIPS), pp. 3104–3112, 2014.

[12] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. of the 2015 Confer-
ence on Empirical Methods in Neural Language Processing (EMNLP),
pp. 1412–1421, 2015.

[13] OpenStack, https://www.openstack.org/.
[14] T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, “Proactive failure

detection learning generation patterns of large-scale network logs,” in
Proc. of the 11th International Conference on Network and Service
Management (CNSM), pp. 8–14, 2015.

[15] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and
M. Auli, “fairseq: A Fast, Extensible Toolkit for Sequence Modeling,”
in Proc of the 2019 Annual Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019): Demonstrations, pp. 48–53, 2019.

[16] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan, “LOGAN: Problem
Diagnosis in the Cloud Using Log-based Reference Models,” in Proc.
of IEEE International Conference on Cloud Engineering (IC2E), pp.
62–67, 2016.

[17] K. R. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlicht-
ing, “Probabilistic model-driven recovery in distributed systems,” IEEE
Transaction on Dependable and Secure Computing, vol. 8, no. 6, pp.
913–928, 2011.

[18] K. R. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlichting,
“Automatic Model-Driven Recovery in Distributed Systems,” in Proc.
of 24th IEEE Symposium on Reliable Distributed Systems (SRDS), pp.
25–36, 2005.

[19] M. L. Littman, N. Ravi, E. Fenson, and R. Howard, “An Instance-based
State Representation for Network Repair,” in Proc. of the 19th National
Conference on American Association for Artificial Intelligence (AAAI),
pp. 287–292, 2004.

[20] M. L. Littman, N. Ravi, E. Fenson, and R. Howard, “Reinforcement
learning for autonomic network repair,” in Proc. of International Con-
ference on Autonomic Computing (ICAC), pp. 284–285, 2004.

[21] Q. Zhu and C. Yuan, “A reinforcement learning approach to automatic
error recovery,” in Proc. of 37th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pp. 729–738, 2007.

[22] Kubernetes https://kubernetes.io/.
[23] P. Yin and G. Neubig, “A Syntactic Neural Model for General-Purpose

Code Generation,” in Proc. of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), pp. 440–450, 2017.

[24] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code
using statistical machine translation,” in Proc. of 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp.
574–584, 2015.

