Parser Self-Training for Syntax-Based Machine Translation

Nara Institute of Science and Technology Augmented Human Communication Laboratory

<u>Makoto Morishita</u>, Koichi Akabe, Yuto Hatakoshi, Graham Neubig, Koichiro Yoshino, Satoshi Nakamura

2015/12/03 IWSLT 2015

Phrase-Based Machine Translation [Koehn et al., 2003]

Translation Model

Reordering Model

- Translate and reorder by phrases.
 - Easy to learn translation model.
 - Low translation accuracy

on language pairs with different word order.

Use the source language parse tree in translation

- High translation accuracy on language pairs with different word order.
- Translation accuracy is affected greatly by the parser accuracy.

 Use the source language parse forest in translation
 Decoder can choose the parse tree that has high translation probability from the parse tree candidates [Zhang et al., 2012]

- Use the parser output as training data.
- Improve the parser accuracy.
 - Parser is adapted to the target domain.

Self-Training for Preordering

[Katz-Brown et al., 2011]

Correct preordering data

By selecting the parse trees,

more effective self-training (Targeted Self-Training).

- Use only high scored parse trees.
- However, in this method, we need hand-aligned data.
- It is **costly** to make hand-aligned data.

Makoto Morishita, AHC Lab, NAIST

Proposed Method

Proposed Method

- Targeted Self-Training using MT automatic evaluation metrics
 - low cost and accurate evaluation

Makoto Morishita, AHC Lab, NAIST

Selection Methods

- Parse tree selection
 - Select a parse tree to use from a single sentence

- Sentence selection
 - Select the sentences to use from the entire corpus

Parse Tree Selection

- Parser 1-best
 - Use the parser 1-best tree.
 - Traditional self-training [McClosky et al. 2006].
- Decoder 1-best
 - Use the parse tree used in translation.
- Evaluation 1-best
 - Among the translation candidates, use the parse tree used in highest scored translation.

Decoder 1-best

Decoder 1-best

- Use the parse tree used in translation.

• Evaluation 1-best

- Among the translation candidate, use the parse tree used in highest scored translation.

- This highest scored translation is called Oracle translation.

Sentence Selection

Random

- Select sentences randomly from the corpus.
- Traditional self-training.
- Threshold of the evaluation score
 - Use sentences that score over the threshold.
- Gain of the evaluation score

- Use sentences that have a large gain in score between decoder 1-best and oracle translation.

Threshold of the evaluation score

- Use sentences that score over threshold.

Gain of the Evaluation Score Oracle translation, Large gain **Selection based on** parse tree the gain of the score Use **Small gain Decoder 1-best translation**, parse tree Do not use

Gain of evaluation score

- Use sentences that have a large gain in score between decoder 1-best and oracle translation.

Experimental Setup (for Evaluation)

Experiment Results (Japanese-English Translation)

Tree Selection	Sentence Selection	Sentences (k)	BLEU	RIBES
Baseline		_	23.83	72.27
Parser 1-best	Random	96	23.66	71.77
Decoder 1-best	Random	97	23.81	72.04
Oracle	Random	97	23.93	72.09

Oracle Translation Score Distribution

• It contains a lot of noisy sentences.

Experiment Results (Japanese-English Translation)

Tree Selection	Sentence Selection	Sentences (k)	BLEU	RIBES
Baseline		_	23.83	72.27
Parser 1-best	Random	96	23.66	71.77
Decoder 1-best	Random	97	23.81	72.04
Oracle	Random	97	23.93	72.09
Oracle	BLEU+1 Threshold	120	** 24.26	72.38
Oracle	BLEU+1 Gain	100	* 24.22	72.32
			* :p < 0.05	**:p<0.01

By self-training, the accuracy significantly improved

Manual Evaluation

Tree selection	Sentence selection	Score	Significance between Baseline	Significance between Parser -best
Baseline		2.38		
Parser 1-best	Random	2.42	No	
Oracle	BLEU+1 Threshold	2.50	Yes (99% level)	Yes (90% level)

Score range is 1 to 5

We could verify that our method is effective.

Example of an improvement

Source	C投与群ではRの活動を240分にわたって明らかに増強した
Reference	in the C - administered group, thermal reaction clearly increased the activity of R for 240 minutes.
Baseline	for 240 minutes clearly enhanced the <u>activity of C administration group R</u> .
Self-Trained	for 240 minutes clearly enhanced the <u>activity of R in the C - administration group</u> .

After Self-Training

Experiment Results (Japanese-Chinese Translation)

Tree Selection	Sentence Selection	Sentences (k)	BLEU	RIBES
Baseline		-	29.60	81.32
Parser 1-best	Random	129	29.75	** 81.55
Decoder 1-best	Random	130	29.76	* 81.53
Oracle	Random	130	** 29.89	** 81.66
Oracle	BLEU+1 Threshold	82	* 29.86	** 81.60
Oracle	BLEU+1 Gain	100	* 29.85	** 81.59
Oracle (ja-en)	BLEU+1 Threshold	120	* 29.87	* 81.58

* :p < 0.05 **:p < 0.01

- By self-training, the accuracy significantly improved
- By using ja-en self-trained model, it also improved the accuracy. Makoto Morishita, AHC Lab, NAIST

Experiment Results (Japanese-Chinese Translation)

Tree Selection	Sentence Selection	Sentences (k)	BLEU	RIBES
Baseline		_	29.60	81.32
Parser 1-best	Random	129	29.75	** 81.55
Decoder 1-best	Random	130	29.76	* 81.53
Oracle	Random	130	** 29.89	** 81.66
Oracle	BLEU+1 Threshold	82	* 29.86	** 81.60
Oracle	BLEU+1 Gain	100	* 29.85	** 81.59
Oracle (ja-en)	BLEU+1 Threshold	120	* 29.87	* 81.58

* :p < 0.05 **:p < 0.01

- By self-training, the accuracy significantly improved
- By using ja-en self-trained model, it also improved the accuracy. Makoto Morishita, AHC Lab, NAIST

Experimental Setup

100 manually annotated trees

- Evalb: tool of scoring parsing accuracy based on Collins, 1997.
- We test Ja-En parsers.

Experiment Results

Tree selection	Sentence selection	Recall	Precision	F-Measure
Baseline		84.88	84.77	84.83
Parser 1-best	Random	86.52	86.41	* 86.46
Oracle	BLEU+1 Threshold	88.13	88.01	**88.07
	-	*	:p<0.05	**:p<0.01

 Our method improves not only MT results, but also parser accuracy itself.

Conclusion

- By our proposed self-training method, translation and parser accuracy improved.
- Self-Training does not rely on target language
 By using Ja-En self-trained model, Ja-Zh translation accuracy improved.
- Future work
 - Verify this method is applicable in other languages.
 - Self-training using several target languages data.
 - Test the effect when performing the parser selftraining repeatedly.

Experiment Results (Japanese-English Translation)

Tree Selection	Sentence Selection	Sentences (k)	BLEU	RIBES
Baseline		_	23.83	72.27
Parser 1-best	Random	96	23.66	71.77
Decoder 1-best	Random	97	23.81	72.04
Oracle	Random	97	23.93	72.09
Oracle	BLEU+1 ≧ 0.7	206	** 24.27	72.38
Oracle	BLEU+1 ≧ 0.8	120	** 24.26	72.38
Oracle	BLEU+1 ≧ 0.9	58	** 24.26	72.49
Oracle	BLEU+1 Gain	100	* 24.22	72.32
			*	

** : p < 0.01

Experiment Results (Japanese-Chinese Translation)

Tree Selection	Sentence Selection	Sentences (k)	BLEU	RIBES
Baseline		_	29.60	81.32
Parser 1-best	Random	129	29.75	** 81.55
Decoder 1-best	Random	130	29.76	* 81.53
Oracle	Random	130	** 29.89	** 81.66
Oracle	BLEU+1 ≧ 0.7	240	** 29.86	** 81.60
Oracle	BLEU+1 ≧ 0.8	150	** 29.91	81.47
Oracle	BLEU+1 ≧ 0.9	82	* 29.86	** 81.60
Oracle	BLEU+1 Gain	100	* 29.85	** 81.59
Oracle (ja-en)	BLEU+1 ≧ 0.8	120	* 29.87	* 81.58
			*	: p < 0.05

**:p<0.01

Why decoder 1-best parse tree is better than parser 1-bset?

- Probability considered in Forest-to-String translation
 - Parse tree probability
 - Translation model
 - Language model
- The rule that use correct tree have
 - high probability on translation model.
 - The rule that use incorrect tree have low probability.
- By using language model,

the correct parse tree tends to be chosen.

- The correct tree have high probability on language model.