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Summary -

A new way to for
both encoder and decoder of NMT

- use smaller subword units as additional features

Our method can improve translation
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Background



Architecture of Neural Machine Translation L

®iE TURZ—ZREF—X A 7=t
Hidden >
Embedding m;
He likes Britney  Spears <S> i TJYk=Z—27—X A
Encoder ) L Decoder

- Encoder converts a source sentence into
(sequence of) vectors

- Decoder outputs a translated sentence based
on the encoded vectors
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Vocabulary Problem A
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- Traditional NMT only uses a word as a unit.

- It cannot use the whole vocabulary.

- We need to convert rare words into unknown
word tokens.
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Byte Pair Encoding (BPE) L
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- Split a rare word into subwords
- Each subword is common
- Alleviate rare words problem

“Neural Machine Translation of Rare Words with Subword Units”, Sennrich et. al., ACL 2016
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Pros and Cons of BPE

- Alleviate rare words problem

- Simple and Fast

- Fixed size of vocabulary

- Known to improve an accuracy

Cons

- Need to find appropriate unit sizes (= number of
merge operations) for encoding/decoding
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Proposed Method



Hierarchical Subword Features Y
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Add smaller subword units as features

- Embedding = large subword + sum of smaller subwords
- NMT can make use of several units at once
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Add to Decoder Side <
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- It does not change an output layer.
- Hierarchical subwords can uniquely determined.
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Add More Features

Hierarchy of BPE subwords
- Merge operations
<m<n
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Add More Features

Hierarchy of BPE subwords
- Merge operations
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Implementation

One-hot (normal) Hierarchical Subword Features
0 0
1 1
Wg o= Wg o =
0 1
0 0

/

Multiple rows are one.

- to implement!

- (Almost)
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Pros of Hierarchical Subword Features 4

- Encoder/Decoder can use several
subwords units at once

- Slmple Eri‘?ney;riFth@ neyT@@ Bcg@ ricg@ t@g@ ncg@ e@g@ 3]

- (Almost) No computational cost
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Experiments



Research Questions
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@ Does the hierarchical subword features improve the model?
@ Which part of the model should we use it?
@ Does it affect to the training speed?

@ How does it affect to the translation results?
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Experimental Settings

- Corpus
- Language: Fr-En, En-Fr
- Training: IWSLT 2016 (TED Talk)
- Dev: tst2014
- Test: tst2012, tst2013

Words Sentences
Train 3.2M 189.3K
w0tz | sk | 1K
w013 | 210k | 1ok
wol4 | 20k | 13K
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Experimental Settings

- NMT model

Encoder-decoder + attention (Luong et al., 2015)

- Vocabulary settings

- Unit: Word level
- Hierarchical Subword Features
- BPE 1k and 300 vocabularies
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Experimental Results

s
Averaged BLEU of 4 models
System Fr-En En-Fr
Baseline (BPE16k) 42.35 43.65
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Experimental Results

System
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Averaged BLEU of 4 models

Fr-En

En-Fr

Baseline (BPE16k)

Add encoder
features

43.82 (+1.47)

45.32 (+1.67)
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Experimental Results <
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Averaged BLEU of 4 models

System Fr-En En-Fr
Baseline (BPE16k) 42.35 43.65
" Add encoder |
encoder 43.82 (+1.47) 4532 (+1.67)
.......... features |
Add decod
ecoder 42,55 (+0.20) 4354 (-0.11)
features
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Experimental Results

Averaged BLEU of 4 models

N
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System Fr-En En-Fr

Baseline (BPE16k) 42.35 43.65
~ Addencoder | . _ |

enecoder 43.82 (+1.47) 4532 (+1.67)
__________ features |

Add decod

seoder 4255 (+0.20) 4354 (-0.11)
__________ features |
Add both features 43.63 (+1.28) 4543 (+1.78)
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Averaged BLEU of 4 models

System Fr-En En-Fr

Baseline (BPE16k) 42.35 43.65
" Add encoder | |

encoder 43.82 (+1.47) 4532 (+1.67)
.......... features |

Add decod

ecoder 42,55 (+0.20) 4354 (-0.11)
__________ features |
Add both features 43.63 (+1.28) 4543 (+1.78)

@ Does the hierarchical subword features improve the model?
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Experimental Results <
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Averaged BLEU of 4 models

System Fr-En En-Fr

Baseline (BPE16k) 42.35 43.65
" Add encoder | |

encoder 43.82 (+1.47) 4532 (+1.67)
__________ features |

Add decod

ecoder 42,55 (+0.20) 4354 (-0.11)
__________ features |
Add both features 43.63 (+1.28) 4543 (+1.78)

@ Which part of the model should we use it?

It depends on the settings, but encoder side only or both
may work well
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Training Speed >

Innovative RE&D by NTT

System Training time / epoch
Baseline 1050 s
Addencoder feature | 10025
Add decoder feature | 10045
 Addbothfeawre | 10195
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Example of Improved Translation <

Innovative RE&D by NTT

J’ai répondu, “Je ne suis pas Britney Spears, mais tu peux peut-étre me

Input R )
'apprendre a moi.

Reference |l was like, “Well I'm not Britney Spears, but maybe you could teach me.

Proposed |l said, “I'm not Britney Spears, but maybe you can teach me.

@ How does it affect to the translation results?

Proposed method could help to translate the rare words.
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Conclusion

Hierarchical subword features improve
translation accuracy!

- Simple

- (Almost) No additional computational cost
- Easy to adapt many NLP tasks.

Future work

- Try with Transformer
- Adapt to other tasks
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