

Improving Neural Machine Translation by Incorporating Hierarchical Subword Features

Makoto Morishita, Jun Suzuki*, Masaaki Nagata NTT Communication Science Laboratories

* Current affiliation is Tohoku University

A new way to enhance embedding layer for both encoder and decoder of NMT

- use smaller subword units as additional features

Our method can improve translation without additional computational cost

Hierarchical Subword

Background

Architecture of Neural Machine Translation

- Encoder converts a source sentence into (sequence of) vectors
- Decoder outputs a translated sentence based on the encoded vectors

Vocabulary Problem

- Traditional NMT only uses a word as a unit.
 - It cannot use the whole vocabulary.
- We need to convert rare words into unknown word tokens.

Byte Pair Encoding (BPE)

- Split a rare word into subwords
 - Each subword is common
 - Alleviate rare words problem

"Neural Machine Translation of Rare Words with Subword Units", Sennrich et. al., ACL 2016

Pros and Cons of BPE

Pros

- Alleviate rare words problem
- Simple and Fast
- Fixed size of vocabulary
- Known to improve an accuracy

Cons

- Need to find appropriate unit sizes (= number of merge operations) for encoding/decoding

Proposed Method

Hierarchical Subword Features

Add smaller subword units as features

- Embedding = large subword + sum of smaller subwords
- NMT can make use of several units at once

Add to Decoder Side

- It does not change an output layer.
- Hierarchical subwords can uniquely determined.

Add More Features

Hierarchy of BPE subwords

- Merge operations

Add More Features

Hierarchy of BPE subwords Britney - Merge operations < m < nBri ney Bri@@ t@@ B@@ Britney ney@@ ri@@ t@@ n@@ e@@ m

Implementation

One-hot (normal)

$oldsymbol{W}_E$

Hierarchical Subword Features

Multiple rows are one.

- Easy to implement!
- (Almost) No additional computational cost!

Pros of Hierarchical Subword Features

- Encoder/Decoder can use several

subwords units at once

- Simple

- (Almost) No computational cost

Experiments

Research Questions

- Q
- Does the hierarchical subword features improve the model?

- Q
- Which part of the model should we use it?

- Does it affect to the training speed?

Q

How does it affect to the translation results?

Experimental Settings

- Corpus

- Language: Fr-En, En-Fr

- Training: IWSLT 2016 (TED Talk)

- Dev: tst2014

- Test: tst2012, tst2013

	Words	Sentences
Train	3.2M	189.3K
tst2012	30.9K	1.7K
tst2013	21.0K	1.0K
tst2014	25.0K	1.3K

Experimental Settings

- NMT model

Encoder-decoder + attention (Luong et al., 2015)

- Vocabulary settings
 - Unit: Word level
 - Hierarchical Subword Features
 - BPE 1k and 300 vocabularies

	Averaged BLEU of 4 models	
System	Fr-En	En-Fr
Baseline (BPE16k)	42.35	43.65

	Averaged BLEU of 4 models	
System	Fr-En	En-Fr
Baseline (BPE16k)	42.35	43.65
Add encoder features	43.82 (+1.47)	45.32 (+1.67)

	Averaged BLEU of 4 models	
System	Fr-En	En-Fr
Baseline (BPE16k)	42.35	43.65
Add encoder features	43.82 (+1.47)	45.32 (+1.67)
Add decoder features	42.55 (+0.20)	43.54 (-0.11)

	Averaged BLE	U of 4 models
System	Fr-En	En-Fr
Baseline (BPE16k)	42.35	43.65
Add encoder features	43.82 (+1.47)	45.32 (+1.67)
Add decoder features	42.55 (+0.20)	43.54 (-0.11)
Add both features	43.63 (+1.28)	45.43 (+1.78)

	Averaged BLEU of 4 models	
System	Fr-En	En-Fr
Baseline (BPE16k)	42.35	43.65
Add encoder features	43.82 (+1.47)	45.32 (+1.67)
Add decoder features	42.55 (+0.20)	43.54 (-0.11)
Add both features	43.63 (+1.28)	45.43 (+1.78)

Does the hierarchical subword features improve the model?

	Averaged BLEU of 4 models	
System	Fr-En	En-Fr
Baseline (BPE16k)	42.35	43.65
Add encoder features	43.82 (+1.47)	45.32 (+1.67)
Add decoder features	42.55 (+0.20)	43.54 (-0.11)
Add both features	43.63 (+1.28)	45.43 (+1.78)

Which part of the model should we use it?

It depends on the settings, but encoder side only or both may work well

Training Speed

System	Training time / epoch
Baseline	1050 s
Add encoder feature	1002 s
Add decoder feature	1004 s
Add both feature	1019 s

Does it affect to the training speed?

No!

Example of Improved Translation

Input	J'ai répondu, "Je ne suis pas Britney Spears , mais tu peux peut-être me l'apprendre à moi.
Reference	I was like, "Well I'm not Britney Spears, but maybe you could teach me.
Baseline	I said, "I'm not British Speney Spears, but maybe you can teach me.
Proposed	I said, "I'm not Britney Spears, but maybe you can teach me.

Proposed method could help to translate the rare words.

Conclusion

Hierarchical subword features improve translation accuracy!

- Simple
- (Almost) No additional computational cost
- Easy to adapt many NLP tasks.

Future work

- Try with Transformer
- Adapt to other tasks

End