Context-aware Neural Machine Translation with Mini-batch Embedding

Makoto Morishita^{1, 2}, Jun Suzuki², Tomoharu Iwata¹, Masaaki Nagata¹

¹NTT Communication Science Laboratories, ²Tohoku University

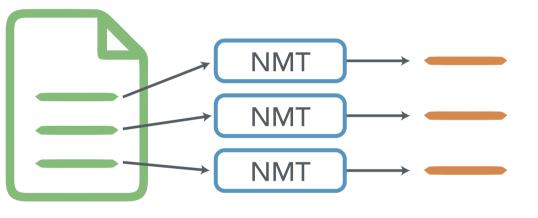
Abstract

Document-level context is essential for a better translation, though current context-aware NMT models are usually complexed and/or slow.

- → We proposed a mini-batch embedding that contains the features of a mini-batch (document).
- → We feed that embedding into an NMT model to achieve a simple and fast context-aware machine translation.

Neural Machine Translation

Context-aware NMT



Single-sentence NMT

Context-aware NMT

Context-aware NMT

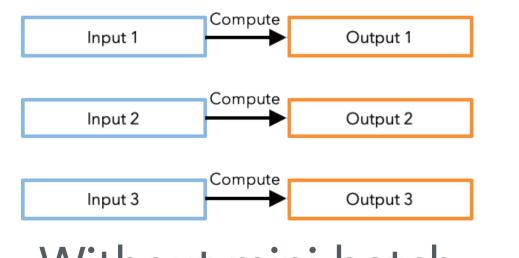
Input/Output: Single sentence

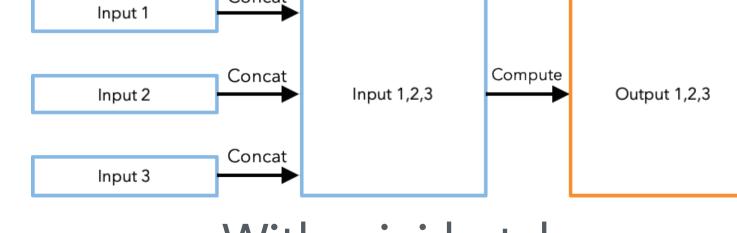
- + Fast
- + Simple
- NMT cannnot consider the document-level context.

Input/Output: Document

- + NMT considers the context.
- Slow
- Complexed model.

Mini-batch





Without mini-batch

With mini-batch

NMT normally uses a mini-batch for training/decoding.

Several inputs are concatenated and computed together.

Requires few numbers of matrix computations.

Context-aware NMT with Mini-batch Embedding

Document-level Mini-batching

Normal mini-batching

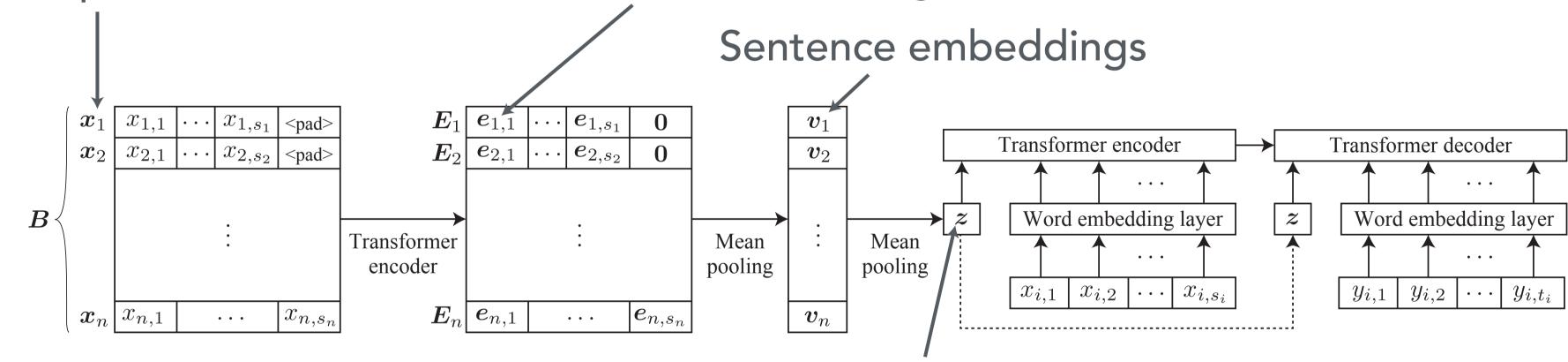
→ Randomly chosen sentences across the document will be in a mini-batch.

Document-level mini-batching

→ Sentences from the same document will be in the same mini-batch

Mini-batch Embedding

Input sentences Contextualized embeddings



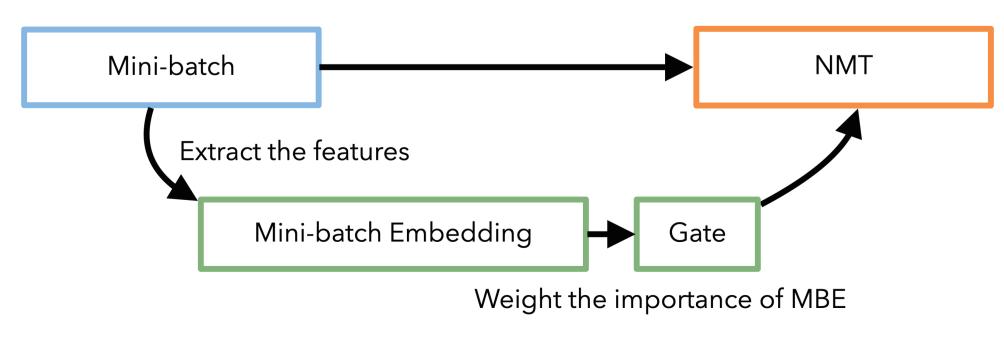
Mini-batch embedding (MBE)

Added as a tag to the downstream task (NMT)

We propose a mini-batch embedding (MBE)

- → includes features of sentences in a mini-batch
- → with the document-level mini-batching, MBE inloudes document-level features

Mini-batch Embedding Gate



We add a gate to weight the importance of MBE

→ If the model failed to extract the features of the mini-batch, the weight would be small

Experiments

Experimental Settings

Language pair: English-to-Japanese

Training data: JParaCrawl (10M sentences)

Test data:

- ASPEC (Scientific paper)
- WMT (News)
- IWSLT (TED Talk)

NMT model: Transformer (big)

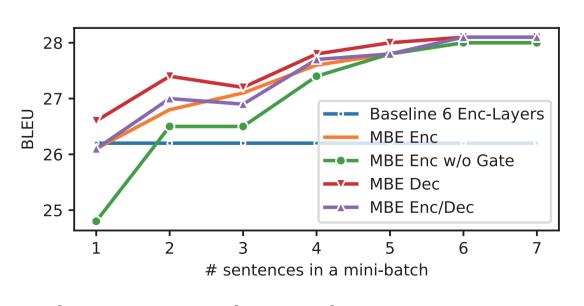
Translation Performance

Model	ASPEC	WMT	IWSLT
Single-sentence NMT	26.2	18.4	12.0
2-to-1	27.0 (+0.8)	19.2 (+0.8)	12.9 (+0.9)
DocRepair	27.9 (+1.7)	19.3 (+0.9)	12.3 (+0.3)
MBE Enc	28.0 (+1.8)	19.9 (+1.5)	12.2 (+0.2)
MBE Enc w/o Gate	28.0 (+1.8)	19.4 (+1.0)	13.0 (+1.0)
MBE Dec	28.1 (+1.9)	19.9 (+1.5)	13.8 (+1.8)
MBE Enc/Dec	28.1 (+1.9)	20.0 (+1.6)	13.4 (+1.4)

Our model surpassed the single-sentence baseline and the current context-aware NMT methods.

→ Feeding the MBE to the decoder-side works better

Effect of Decoding Batch-size



As we increase the mini-batch size, our model achieves better performance.

→ The large mini-batch size makes the MBE more informative